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A training set of 35 compounds whose calcite growth inhibition potencies were measured
was used to construct a 4D-QSPR model. A site-specific binding pattern of atom types in
space, that is a pharmacophore, consisting of six interaction sites between the inhibitors
and the surface to which they bind was identified and represented by the 4D-QSPR model.
Three of these pharmacophore sites dominate the 4D-QSPR model. One pharmacophore site
indicates that its occupancy by any inhibitor atom decreases inhibition potency, suggesting
this region of space is occupied by the binding surface. A second pharmacophore site involves
an oxygen of a PO3H2 group, which is common to all compounds of the training set, hydrogen
bonding to the surface. The third major pharmacophore site identifies a nonpolar region of
space as being favorable to inhibition potency. A virtual library of 20 analogues to the training
set was evaluated by using the 4D-QSPR model as a virtual high throughput screen, VHTS.
Seven of the compounds in the virtual library are predicted to be better calcite growth
inhibitors than the most potent inhibitor of the training set.

Introduction

Virtual high throughput screening (VHTS) is becom-
ing an increasingly important, and useful, tool to
evaluate virtual compound libraries (VCL) in the search
for both new lead compounds and their structure-
activity optimization as part of the preclinical drug
discovery process.1-6 Tens to thousands of compounds
can be readily evaluated in VHTS without any of the
compounds actually being made or tested. Clearly, there
is an enormous time and cost savings to using VHTS
in drug-candidate screening, and applications in materi-
als science could be equally advantageous to those being
realized in the pharmaceutical sciences.

However, there seems to be very minimal use of
VHTS in materials science.

Experimental HTS are nearly nonexistent in materi-
als science largely because of the difficulty in making
rapid measurements of the physicochemical properties

of interest. There is no analogue measurement in
materials science applications to the rapid binding assay
that is common in pharmaceutical HTS. On the other
hand, the construction of a VHTS in materials science
has the same requirements as those of pharmaceutical
applications: (a) a training set of compounds and
corresponding measures of the property of interest, (b)
a pool of trial descriptors for the compounds of the
training set, and (c) a means of constructing a statistical
relationship, or correlation, between the property mea-
sures and some subset of the trial descriptor pool.

The resulting relationship between the property of
interest and the subset of descriptors is usually referred
to as a quantitative structure-property relationship, or
QSPR. The application of the QSPR to predict the values
of the property of interest for a library of hypothetical
compounds transforms the QSPR into a VHTS. In other
words, a QSPR model can be used as a VHTS.

Unfortunately, not all QSPR models of equal statisti-
cal significance for a training set are actually “equal”.
That is, the predictive power of equal QSPR models
outside the training set can be different. The utility of
a QSPR model as a VHTS will depend on its predictive
power. Normally, the closer the descriptors of a QSPR
model are to reflecting the actual mechanism of action,
the more predictive power the model will possess. Thus,
there is an impetus to understand, or simply postulate,
a mechanism of action, and to generate corresponding
descriptors as part of a QSPR analysis. If the resulting
QSPR model has poor predictive power, it and the
mechanism of action can be abandoned and an alternate
mechanism, and corresponding set of descriptors, used
in another QSPR analysis.

A general mechanism encountered in materials sci-
ence applications is the binding of small molecules to
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surfaces. Virtually all coatings, paint, and printing
applications fall into this mechanistic classification.
These binding processes are very similar in modeling
format to the ligand-receptor binding interaction that
is fundamental to pharmaceutical science. Thus, the
quantitative structure-activity relationship, QSAR,
methods used to model ligand-receptor binding should
find use in materials science small molecule-surface
binding applications. In the study reported here the
inhibition of calcite crystal growth by small organics has
been modeled by 4D-QSAR analysis,7 which is a meth-
odology that has been used to develop QSAR models for
ligand-receptor interactions.8-10 The resultant 4D-
QSPR models for inhibition of calcite growth were used
to generate the “active” conformation of each calcite
inhibitor in the training set and as VHTS to evaluate a
small library of hypothetical calcite growth inhibitors.

Method

A. Training Set of Calcite Crystal Growth In-
hibitors. A training set of 35 calcite crystal growth
inhibitors, along with their respective measured calcite
crystal growth inhibitor “constants”, Ig, were used to
construct the 4D-QSPR models. The Ig values are
actually crystal growth inhibition times (in minutes)
determined from a supersaturated solution of calcium
and carbonate at constant temperature.11 Solution mix-
ing is done to ensure metastability at a desired ionic
strength and pH (≈8.5). Calcium seed crystals of a
known fixed size (≈10 µm per side) are added to the
solution. As the experiment runs, calcium and carbon-
ate/bicarbonate titrants are fed to maintain the fixed
pH. Inhibitor is added after a small amount of titrants
have been fed so that the initial growth rate can be
observed prior to the addition of inhibitor. The con-
sumption of titrants is measured as a function of time
to obtain the growth rate. The inhibition time, Ig, is
taken as the time required for the repropagation of
crystal growth after the inhibitor has been added to the
system. Multiple experiments are normally performed,
and corrections (normalization) are made for variations
in initial crystal growth rates and sizes of the seed
crystals.

The structures of the compounds and their Ig values
[-log(Ig) measures are used in constructing the 4D-
QSAR models] are given in Table 1. The compounds all
contain at least one -PO3H2 group. Thus, to some

degree the compounds can be considered analogues to
one another. On the other hand, the compounds are
markedly varied in size and composition of atoms so that
they possess considerable structural diversity. Overall,
the training set can be considered to cover a relatively
wide range of chemical structure within the family of
compounds having -PO3H2 groups.

4D-QSPR models were constructed using -log(Ig) as
a dependent variable measure which monitors the free
energy change associated with calcite crystal growth
inhibition.12

B. The 4D-QSAR/QSPR Formalism. The 4D-QSAR/
QSPR formalism and corresponding methodology has
been presented in detail.7-10 A commercial software
package to perform 4D-QSAR and 4D-QSPR analyses
is available, and its operations manual13 is also a good
reference that describes the methodology.

In summary, each compound of the training set from
which the 4D-QSPR models are constructed is sampled
with respect to its conformational freedom. Molecular
dynamics simulation, MDS, is currently used to gener-
ate the conformational ensemble profile of each mol-
ecule.7,14 In this study 100 000 conformations were
sampled in the MDS. Each conformation of the en-
semble profile of each molecule is then placed in a grid
cell space of some particular resolution according to
some selected alignment. By way of an example, com-
pound 10 of Table 1 is shown in Figure 1 in its grid cell
space for a particular three-ordered atom alignment.
That is, these common atoms are selected to perform a
quantitative spatial comparison of molecules, and these
atoms are selected in a particular sequence in forming
the comparison rule.

The grid cell occupancies of the set of atom types,
defined in Table 2, composing each molecule of the
training set are recorded for each conformation of the
molecule in its ensemble profile. The resulting composite
set of grid cell occupancy values for each of the atom
types composing the molecule, called grid cell occupancy
descriptors, GCODs, become the pool of independent
variables for constructing 4D-QSPR models. Non-GCOD
descriptors can also be selected by the user and added
to the GCOD descriptor pool. No non-GCOD descriptor
was found to be significant in this study and, conse-
quently, this class of descriptors is not discussed any
further.

The number of GCODs in the descriptor pool can be
very large in comparison to the size of the training set.
Hence, a data reduction is done as part of the 4D-QSPR
model construction process. Partial least squares, PLS,
regression15 and some filtering rules7-9 are applied to
the complete set of descriptors in the pool to determine
a set of only the most highly weighted (significant)
GCOD descriptors for consideration in further 4D-
QSPR model building. Currently, the 200 most highly
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weighted GCODs are used as an input basis set for 4D-
QSPR model optimization using a particular genetic
algorithm called the “genetic function approximation”,
GFA.16,17

Assigning grid cell occupancy, that is, determining a
set of GCODs, for the ensemble set of conformations of

each molecule in the training set can be repeated for
another alignment. This will, in turn, permit the
construction of an optimum 4D-QSPR model for the new
alignment. In other words, the single ensemble set of
conformations of each molecule in the training set can
be used to generate optimum 4D-QSPR models for each

(16) Rogers, D. G/SPLINES: A hybrid of Friedman’s multivariate
adaptive regression splines (MARS) algorithm with Holland’s genetic
algorithm. The Proceedings of the Fourth International Conference on
Genetic Algorithms; San Diego, 1991; pp 38-46.

(17) Rogers, D.; Hopfinger, A. J. Applications of genetic function
approximation to quantitative structure-activity relationships and
quantitative structure-property relationships. J. Chem. Inf. Comput.
Sci. 1994, 34, 854-866.

Table 1. Chemical Structures and Corresponding Calcite-Growth Inhibitor Measures, -log(Ig), Used in the 4D-QSPR
Analysis

Analysis of Calcite Growth Inhibitor Libraries Chem. Mater., Vol. 12, No. 12, 2000 3823



alignment selected, and an arbitrarily large number of
alignments can be selected. Thus, 4D-QSPR model
optimization can be performed as a function of align-
ment, GCODs, and/or conformational sampling.

It is possible to hypothesize an “active conformation”
of each compound in the training set. This is achieved
by first identifying all conformer states in the sampling
of a molecule that are within ∆E (currently set at 2 kcal/
mol) energy units of the global minimum of the confor-
mational ensemble profile. Each member of the result-
ing set of low-energy conformations is individually
evaluated by using the best 4D-QSPR model. Since only
a single conformation is used, the grid cell occupancy
is either zero or one for each GCOD of the model. The
single conformation within ∆E that predicts the highest
“activity” (calcite crystal growth inhibition constant, Ig)
is selected as the active conformation. The postulated
active conformations can be used as structure design
templates.

The difference between the predicted activity (using
the active conformation) and the observed activity of a
molecule can be viewed as the loss in possible activity
of the molecule due to its flexibility. That is, the active
conformation tends to have appropriate atom types that
completely occupy activity-enhancing GCODs, while the
activity decreasing GCODs are not occupied. In contrast,
the conformational ensemble profile of the molecule
leads to both the activity enhancing and activity de-
creasing GCODs being partially occupied. Said another

way, the difference between predicted activity, using the
active conformation, and the observed activity is the loss
in activity due to conformational entropy.

The 4D-QSPR model can also be used as a virtual
high throughput screen, VHTS, to predict the activities
of the members of a virtual library of “similar” com-
pounds to those of the training set.18 There is no
rigorous way to define what “similar” means in terms
of accurately being able to estimate activity of a
compound outside of the training set. A safe course of
action is to simply expand the analogue characteristics
of the training set. In this application a small virtual
library was generated where the library members are
analogues to the smaller, but also the better, inhibitors
of the training set.

The use of a 4D-QSPR model as a VHTS is not novel,
but rather an extended application of a fundamental
purpose of constructing the QSPR model. QSPR models
are constructed to permit forecasting the measure of a
property of interest for hypothetical molecules of inter-
est.

Results

Two alignments, defined in Table 3 using a general
compound able to encompass most of the compounds
present in Table 1, were evaluated in the 4D-QSPR
analysis. One reason only two alignments were consid-
ered is that a very good model was constructed for one
of the alignments. The other reason for limiting align-
ment choices is although there is a relatively wide range
in size (number of atoms) of the molecules in the
training set, only a small grouping of atoms is common
across the compounds of the training set. It was decided
to limit the alignments to three-ordered atom align-
ments within this common grouping. Table 3 also
contains, among other statistical measurements, the

(18) Venkatarangan, P.; Hopfinger, A. J. Prediction of ligand-
receptor binding free energy by 4D-QSAR analysis: application to a
set of glucose analogue inhibitors of glycogen phosphorylase. J. Chem.
Inf. Comput. Sci. 1999, 39, 9, 1141-1150.

Figure 1. Compound 10 of Table 1, the most potent calcite
growth inhibitor of the training set, shown in a 1A grid cell
lattice space.

Table 2. Grid Cell Occupancy Atom Types and
Corresponding Numerical Coding

grid cell descriptor code atom type

0 all
1 nonpolar
2 polar positive
3 polar negative
4 H-bond acceptor
5 H-bond donor
6 aromatic

Table 3. Summary of the Statistical Fitting Measures for
the 10 Best Models Obtained from the 4D-QSPR Analysis

alignment 1 alignment 2

model LOF LSE R2 Q2 LOF LSE R2 Q2

1 1.07 0.25 0.85 0.81 1.34 0.44 0.74 0.67
2 1.17 0.28 0.83 0.78 1.93 0.46 0.73 0.63
3 0.89 0.29 0.83 0.78 1.16 0.50 0.70 0.63
4 1.24 0.29 0.83 0.78 1.53 0.50 0.70 0.63
5 0.91 0.30 0.82 0.78 1.21 0.52 0.69 0.62
6 0.96 0.23 0.86 0.77 1.61 0.53 0.69 0.62
7 0.92 0.30 0.82 0.77 1.83 0.43 0.74 0.62
8 1.11 0.26 0.84 0.76 1.50 0.49 0.71 0.62
9 0.93 0.31 0.82 0.76 1.25 0.54 0.68 0.61

10 0.99 0.32 0.81 0.76 2.69 0.43 0.74 0.61
a In case of molecules 1, 2, 3, 14, 15, and 25, both alignments

refer to the oxygen atoms of carboxylate groups.
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cross-validated correlation coefficient, Q2, of the top-10
4D-QSPR models found for each alignment. It is clear
that alignment 1 of Table 3 is superior, as measured by
the Q2 of its 10 best 4D-QSPR models, to the other
alignment. Hence, only alignment 1 was considered in
the further analysis of the training set and in perform-
ing a VHTS.

The top-10 4D-QSPR models of alignment 1 are
summarized in Table 4. These models were obtained by
using the GFA. The best 4D-QSPR model is

In eq 1 GCI(x) is the Ith significant GCOD descriptor
having the x-type IPE as defined and coded in Table 2.
Figure 2 is a plot of observed versus predicted -log(Ig)
values for the compounds of the training set. No
compound in the training set is an outlier.

To determine if the top-10 4D-QSPR models of align-
ment 1 are providing common, or distinct, structure-
inhibition information, the correlation coefficients of the
residuals in fit of the 4D-QSPR models were computed
and are reported in Table 5. Highly similar models will
have highly similar residuals of fit to the observed
dependent variables of the training set. Correspond-
ingly, these residuals of fit will be highly correlated to

one another. All of the top-10 4D-QSPR models have
residuals of fit which are highly correlated to one
another (R > 0.85). Therefore, there is only one 4D-
QSPR model, namely, eq 1, which is the best 4D-QSPR
model of the top-10, to explain the training set data.

A linear cross-correlation matrix of the GCODs of eq
1 as well as -log(Ig) has been built and is given in Table
6. No pair of GCODs of eq 1 are more highly correlated
than an R ) 0.57. This finding suggests that each of
the GCODs is largely independent of the others and is
providing distinct information to explain the data
comprising the training set. GCODs GC3(a) and GC5-
(hbd) are, individually, the most highly correlated
descriptors to -log(Ig).

Figure 3 shows another way to analyze the presence
of important GCODs in the optimum model. The fre-
quency of occurrence of each GCOD in the top-10 models
is shown in Figure 3, and it can be seen that only GC5-
(hbd) is present in all 10 models, but also that five out
of six GCODs present in model 1 are also present in
60% of the other nine models.

The predicted active conformation of each compound
of the training set was determined from its conforma-
tional ensemble profile and eq 1 according to the scheme
given in the Method section. The GCODs of the 4D-
QSPR model (eq 1) are shown mapped into space
relative to the postulated active conformation of a good
inhibitor, compound 10 of Table 1, in Figure 4. The grid
cells are represented by spheres whose diameters are
equal to the grid cell resolution, namely, 1 Å. It can be
seen in Figure 4, for example, that GC5(hbd), one of the
most important GCODs in the 4D-QSPR model, as
judged by its regression coefficient, its individual cor-
relation to -log(Ig), and its frequency of appearance in
all top-10 4D-QSPR models, is located near the proto-
nated oxygens of one of the two PO3H2 groups. The
nearest proton is located 1.24 Å from GC5(hbd).
GC1(a), the other highly significant GCOD of eq 1, is
not near any atom of compound 10. Occupancy of this
grid cell by any type of atom is predicted to be detri-
mental to good inhibition potency since the sign of the
regression coefficient of GC1(a) is negative in eq 1.

GC6(hba) is another important GCOD in the best 4D-
QSPR model because of its large regression coefficient.
This GCOD is only 1.04 Å from the nonprotonated
oxygen of one of the PO3H2 moieties. The other two
GCODs of eq 1 relative to compound 10 are GC2(hbd),
located only 0.59 Å from a protonated oxygen, and
GC3(a), which is 1.34 Å from the methyl group.

Figure 5 is the same as Figure 4 except that the
reference molecule, in its active conformation, is com-
pound 13 of Table 1, which is a poor calcite growth
inhibitor. In this case GC5(hbd) is far from any hydro-
gen bond donor group, but 2.8 Å from a carbon atom.
GC6(hba) is the only GCOD of eq 1 that is located near
a “correct” atom type, being 1.4 Å from an oxygen atom.
GC2(hbd) is about 2.4 Å from an oxygen of compound
13.

These types of visual comparisons between com-
pounds in the training set, in their predicted active
conformations, and the GCODs of the corresponding 4D-
QSPR model is a qualitative approach to validating the
model. Moreover, the graphical display of the GCODs
overlaid on a good inhibitor, as in Figure 4, can be used

Table 4. Ten Best 4D-QSPR Models for Alignment 1 for
the Calcite Growth Inhibition, -log(Ig), Training Set

1 -log(Ig) ) 6 -log(Ig) )
- 24.55 * GC1(a) - 11.34 * GC12(a)
+ 4.37 * GC2(hbd) + 7.77 * GC2(hbd)
+ 3.20 * GC3(a) + 11.15 *
+ 24.71 * GC4(p-) GC13(p+)
+ 26.80 * GC5(hbd) + 24.15 * GC4(p-)
+ 10.95 * GC6(hba) + 27.05 * GC5(hbd)
- 0.065 + 12.18 * GC6(hba)

- 0.084
2 -log(Ig) ) 7 -log(Ig) )

- 16.36 * GC7(np) - 11.92 * GC12(a)
+ 4.60 * GC2(hbd) + 7.70 * GC2(hbd)
+ 2.98 * GC3(a) + 24.66 * GC4(p-)
+ 24.49 * GC4(p-) + 27.04 * GC5(hbd)
+ 25.74 * GC5(hbd) + 13.56 * GC6(hba)
+ 10.99 * GC6(hba) - 0.084
- 0.058

3 -log(Ig) ) 8 -log(Ig) )
- 31.80 * GC1(a) - 31.36 * GC1(a)
+ 6.50 * GC3(a) + 8.44 * GC14(hba)
+ 20.09 * GC8(a) + 6.49 * GC3(a)
+ 26.65 * GC5(hbd) + 20.13 * GC8(a)
+ 7.82 * GC6(hba) + 26.98 * GC5(hbd)
- 0.046 + 7.62 * GC6(hba)

- 0.091
4 -log(Ig) ) 9 -log(Ig) )

- 9.56 * GC9(a) - 14.98 * GC15(a)
+ 5.30 * GC2(hbd) + 7.60 * GC2(hbd)
+ 2.24 * GC3(a) + 22.74 * GC4(p-)
+ 9.83 * GC10(p-) + 25.39 * GC5(hbd)
+ 26.66 * GC5(hbd) + 13.57 * GC6(hba)
+ 11.50 * GC6(hba) - 0.027
- 0.037

5 -log(Ig) ) 10 -log(Ig) )
- 35.97 * GC11(np) - 22.68 * GC16(np)
+ 6.45 * GC3(a) + 6.29 * GC3(a)
+ 17.46 * GC8(a) + 23.47 * GC4(p-)
+ 25.81 * GC5(hbd) + 25.42 * GC5(hbd)
+ 7.64 * GC6(hba) + 8.05 * GC6(hba)
- 0.026 - 0.005

-log(Ig) ) -24.6GC1(a) + 4.37GC2(hba) +
3.20GC3(a) + 24.7GC4(np) + 26.8GC5(hbd) +

10.9GC6(hbd) - 0.065 N ) 35
R2 ) 0.85 Q2 ) 0.81 (1)
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as a qualitative design template to see how well a
hypothetical molecule fits the spatial binding pattern
of atom types defined by the GCODs of the 4D-QSPR
model.

Prediction of the -log(Ig) value of a member of the
training set using a 4D-QSPR model, but only employ-
ing the predicted active conformation, permits an esti-
mate of the conformational entropy contribution to
inhibition potency of the compound. Basically, the
difference between the predicted and the observed
inhibition potency is due to conformational entropy. The
differences between predicted and observed inhibition
potencies are plotted in Figure 6 for all the compounds
of the training set. The compound numbering is the
same as given in Table 1. Caution needs to be exercised
in interpreting these differences as the quantitative
gains and/or loses in -log(Ig) arising from conforma-
tional entropy. The effect of the occupancy differences

between the actual CEP occupancy values of a com-
pound and the limiting occupancy values of 0 or 1 for
the postulated active conformation can be attenuated
by the regression coefficients which are derived solely
on the basis of grid cell occupancy.

In general, most of the differences in Figure 6 are
negative, suggesting that there is a loss in possible
inhibition potency for most compounds. Only four of the
35 compounds of the training set have positive inhibition
potency differences. The conformational flexibility, of
which conformational entropy is a measure, seemingly
prevents the “binding state” from being fully realized
owing to the population of conformational states acces-
sible to the inhibitor.

Compounds 12 and 21 both have extremely large
negative differences between observed and predicted
-log(Ig) values. Compounds 12 and 21 both do not
occupy GC1 (negative regression coefficient in eq 1) for
their postulated active conformations, which is the
primary source of the very large negative differences
in inhibition potency. Compound 4 has a very large
positive difference in Figure 6 because it does not occupy
GC5 of eq 1. The regression coefficient of GC5 is very
large so that a fractional occupancy of this GCOD by
compound 4 yields a significant contribution to its
inhibition potency.

The information in Figure 6 suggests not using
compound 4 as a lead compound for generating ana-
logues having its core structure. The inability to occupy
GC5 for preferred low-energy conformations and binding
alignment limits its inherent inhibition potency. Con-
versely, compounds 12 and 21 might be considered as

Figure 2. Plot of the predicted values for [-log(Ig)] versus the corresponding experimental values. The ideal relationship is
displayed with a trend line of unitary slope.

Table 5. Cross-Correlation Matrix for the Residuals (Res)
of Error in Predicting Activity Data of the Best 10

Models for Alignment 1a

Res1 Res2 Res3 Res4 Res5 Res6 Res7 Res8 Res9 Res10

Res1 1.00
Res2 0.98 1.00
Res3 0.93 0.90 1.00
Res4 0.98 0.97 0.87 1.00
Res5 0.92 0.90 0.99 0.87 1.00
Res6 0.83 0.84 0.70 0.87 0.68 1.00
Res7 0.94 0.94 0.77 0.96 0.75 0.87 1.00
Res8 0.84 0.83 0.95 0.79 0.94 0.75 0.67 1.00
Res9 0.91 0.94 0.74 0.95 0.74 0.84 0.96 0.64 1.00
Res10 0.92 0.93 0.98 0.88 0.98 0.72 0.77 0.94 0.78 1.00

a All pairs with R < 0.80 are presented in bold.

Table 6. Cross-Correlation Matrix of the GCOD and -log(Ig) Pairs of the Optimum 4D-QSPR Model

GC1(a) GC2(hdb) GC3(a) GC4(p-) GC5(hbd) GC6(hdb) -log(Ig)

GC1(a) 1.00
GC2(hdb) -0.08 1.00
GC3(a) 0.61 0.57 1.00
GC4(p-) 0.37 -0.06 0.53 1.00
GC5(hbd) -0.03 -0.07 -0.13 -0.07 1.00
GC6(hdb) 0.07 -0.17 0.25 -0.03 -0.10 1.00
-log(Ig) 0.17 0.41 0.57 0.23 0.43 0.42 1.00
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lead structures, since they both do not occupy GC1.
However, they also do not occupy inhibition potency
enhancing GCODs and are inactive! Thus, compounds
4, 12, and 21, which are anomalies in terms of the
behavior of -log(Ig) and conformational entropy, are
best avoided as lead sources for generating new librar-
ies.

A small virtual library of 20 compounds was con-
structed on the basis of the high inhibition potencies,
and small sizes, of compounds 7 and 10 of Table 1. This
virtual library is given in Table 7. Each of the 20 virtual
compounds was screened by the 4D-QSPR model, ex-
pressed by eq 1, as the VHTS. Virtual screening involves
processing each virtual test compound in the same

Figure 3. Bar graph representation of the frequency of use for the most relevant GCODs in the top-10 models obtained from the
4D-QSPR analysis.

Figure 4. Stereorepresentation of a stick model for compound 10 (the most active calcite growth inhibitor) and the best 4D-
QSPR model 1, given by eq 1. The GCODs are represented as “floating” spheres: GCODs which enhance inhibition are darker in
shading, while those GCODs which diminish inhibition potency are lighter in shading.

Figure 5. Same as Figure 4, but compound 13, one of the least potent calcite growth inhibitors, is used as the reference compound.

Analysis of Calcite Growth Inhibitor Libraries Chem. Mater., Vol. 12, No. 12, 2000 3827



manner as done for each compound in the training set.
This processing includes computing the GCOD values
of the terms in eq 1 by generating the conformational
ensemble of each virtual test compound.

Seven of the virtual compounds were predicted by the
VHTS to be more potent calcite growth inhibitors than
compound 10 of Table 1, which is the most potent
inhibitor in the training set. These seven compounds,
and their predicted -log(Ig) values, are given in Table
8. The high predicted inhibitor potencies of these
compounds are largely due to the high occupancy of
GC2(hba) by a nonprotonated oxygen of a PO3H2 group,
minimal occupancy of GC1(a) by any atom of the
inhibitor, and partial occupancy of GC3(a) by either a
methyl group or a hydroxyl group.

Discussion

The ability to establish a significant 4D-QSPR model
devoid of any nonspecific binding property, and only

involving GCODs, suggests that calcite crystal growth
inhibition does involve some degree of specific binding
of the inhibitor. Possible molecular mechanisms of
crystal growth inhibition include (a) complexing of the
inhibitor with a calcium ion and/or calcium carbonate/
bicarbonate in solution, (b) deposition of the inhibitors
on the surfaces of growing calcite crystals (the result of
such inhibitor deposition would create defects in the
crystals and limit growth), or (c) a combination of both
mechanisms described above.

Deposition of inhibitors on crystal surfaces is more
consistent with specific binding, as is implied by the 4D-

Figure 6. Graphical representation of the residuals in the -log(Ig) values between those of the predicted active conformation
using eq 1 and the corresponding observed values. The residuals obtained using the GCOD values in eq 1 and the observed
values are also shown for comparison.

Table 7. Virtual Library of Calcite Growth Inhibitors
Based on Compounds 7 and 10 of the Training Set

compd R1 R2

1 OMe Me
2 Me Me
3 H CH2OH
4 H Et
5 H CH2OMe
6 H CH2NH3

+

7 H OH
8 H NH3

+

9 H OMe
10 CN Me
11 H CN
12 H CH2CN
13 H Prop
14 H CH2CH2OH
15 H CH2CH2OMe
16 OH CH2OH
17 OH CH2OMe
18 OMe CH2OH
19 OH Et
20 Me CH2OH

Table 8. Calcite Crystal Growth Inhibitors from the
Virtual Library, Which Are Predicted To Be Better

Inhibitors Than the Most Potent Inhibitor, Compound
10, of the Training Set (The 4D-QSPR Model, eq 1, Has

Been Used as the VHTS)
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QSPR model found in this study, than inhibitor com-
plexing to free calcium ions in solution. There appears
to be multiple ways to complex free calcium ions to the
inhibitors of the training set. Further, no single geo-
metric mode of free calcium ion complexing to inhibitors
can be identified which separates good inhibitors from
poor inhibitors. Still, no arrangement of calcium ions
on the common growth faces of calcite match the pattern
of GCODs in the 4D-QSPR model. Perhaps the highly
ordered packing of a crystal structure imparts large
steric restrictions to the way in which an inhibitor can
fit, and bind, to sites on a growing surface of a calcite
crystal. The 4D-QSPR model captures the representa-
tive average requirements of an inhibitor to bind to
these sites on the growing surfaces and inhibit growth.

An inspection of the best 4D-QSPR model in both its
numerical (eq 1) and graphic (Figures 4 and 5) repre-
sentations delineates the pattern of atoms of the inhibi-
tors (normally called a pharmacophore in biological
applications) primarily responsible for inhibition po-
tency, or lack thereof. The pharmacophore for calcite
growth inhibition derived from the training set identifies
six possible interaction sites on an inhibitor which can
influence its potency. Of these six sites, a steric restric-
tion, probably involving some group on the binding
surface, is associated with GC1(a). A favorable nonpolar
binding site on the surface is inferred from GC4(np),
and one of the protonated oxygens of one of the PO3H2
groups is predicted to hydrogen bond to a surface
hydrogen bond acceptor on the basis of GC5(hbd). These
three pharmacophore sites dominate (largest regression
coefficients in eq 1) inhibition specificity in the 4D-QSPR
model. At least two other GCOD descriptors in eq 1 are
important to predict inhibition potencies of compounds
of the virtual library: GC2(hba) for hydrogen bonding
of a nonprotonated oxygen of a PO3H2 moiety to a proton
on the binding surface and GC3(a) that describes the
benefit of a group of comparable size to a methyl or
hydroxy group to enhancing inhibition potency.

The seven virtual compounds of the VHTS predicted
to be potent inhibitiors, which are given in Table 8,
suggest that many of the compounds in the training set
are needlessly large and “complex” in chemical structure
relative to the requirements for realizing high inhibition
potency. The compounds in Table 7 also illustrate that
a wide variety of substituent combinations can be placed
on the core of compound 10 of Table 1 in order to explode
the exploration of inhibition potency in this class of
simple molecules. Moreover, exploration of this class of
compounds appears to be a more fruitful endeavor, given
the findings in Table 8, than expanding the chemistry
away from direct analogues as is characteristic of the
training set.

This calcite crystal growth inhibition application
study suggests that 4D-QSPR analysis, and the subse-
quent use of a 4D-QSPR model as a VHTS, may
comprise a useful tool to develop new materials which
act through site specific interaction mechanisms. The
utility of applying 4D-QSPR analysis to other classes
of material design problems, not explicitly involving
geometric mechanistic specificity, is not known. How-
ever, the 4D-QSPR paradigm does allow a useful way
of cataloging and processing information about molec-
ular geometry as a function of conformational freedom,
time, temperature, and molecular alignment. Any prob-
lem in materials design that can be formulated in terms
of these degrees of freedom could, presumably, benefit
from 4D-QSPR analysis.
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